Harold’s Elephants

 

topic joy
organ limbic system
chemicals dopamine, endorphin, oxytocin, serotonin, cortisol

The envelope has been lying on his desk for two days. Harold is unable to open it. There is too much at stake. The words inside that envelope will change his life.

It’s too thin, Harold thinks. It must be a rejection letter. That would mean that he’d have to go back to his life as a chef. He likes cooking but after ten years, he has become bored of doing it for a living. He took a five year break to try making a living as a sculptor. These five have been the best years of his life. He doesn’t want to stop but he has used up all his savings. Harold is engaged to be married and wants to start a family soon. He is 41 years old and wants to have a stable career soon, one way or another. This is his last chance to be financially stable while living his passion.

Harold opens the envelope.

Congratulation, it says. Harold stares. He reads and read again. “Congratulations. We would like to hire you to design and sculpt the elephant sculpture for the newest branch of our restaurant. You will also be designing unique sculptures for each one of our 21 restaurants worldwide.” There are instructions on going to a website to complete the paperwork.

Harold is too shocked to react. He hears the front door open. His fiancée walks in. She is sweating from her daily jog and is heading for the bathroom when he leaps up to go talk to her. He gushes out the news. He says it so fast that she has to ask him to repeat himself.

There are chemical activities in Harold’s brain causing his happiness. These chemicals are called neurotransmitters because they transmit signals amongst the brain’s neurons. The primary neurotransmitters spurting in Harold’s brain is dopamine and serotonin. The brain spurts dopamine when it gets what it wants. It secretes serotonin when it feels a sense of pride.

His fiancée is also happy. In addition to dopamine, her brain is spurting endorphin from the runner’s high that she has just had. It is possible that she might also be releasing serotonin via association with someone who has just established a job which will ensure survival related safety and security for her.

As mentioned in the book Meet Your Happy Chemicals: Dopamine, Endorphin, Oxytocin, Serotonin, Dr. Loretta Breuning talks about a fourth chemical, oxytocin. This is the neurotransmitter that Harold and his fiancée’s brains secrete on a consistent basis. Oxytocin is released as a part of developing a trust based relationship with another human being. Sexual intimacy and other bonding activities, like touching, also cause a spike in oxytocin levels. Harold and his fiancée have a healthy level of oxytocin in their system because they live together within the framework of a trusting relationship.

Harold and his fiancée are both experiencing a burst of many happy chemicals and thus a burst of joy. But the happy chemicals exploding in their brains are not all the same, so their happiness level is not exactly the same.

Earlier in the day, while Harold was teetering on the verge of opening the envelope, his brain was probably spiking with cortisol, a chemical produced by the brain when it feels stressed. His cortisol level is down but not completely gone and he has no reason to have endorphin in his system. His fiancée has endorphin in her system but no reason to have cortisol. They both have dopamine, serotonin, and oxytocin circulating around. The levels of the chemical might be higher in Harold’s system because he is directly affected by the news. Without sophisticated machines, it is not easy to say who is happier, but it’s easier to guess the comparative levels of chemicals in each person’s neural circuits.

“Your brain is always seeking ways to get more serotonin without losing oxytocin or increasing cortisol,” says Dr. Breuning in her book. The brain does not want cortisol, the “unhappy” drug. Everyday life, of course, creates spurts of cortisol, and the brain struggles to lower the level. It is always trying to maximize its happy drugs and minimize the unhappy ones. But sometimes it has to negotiate. For example, in order to secure oxytocin from a bonding relationship, e.g., friendship, the brain might have to sacrifice serotonin that comes from pride. It needs to calculate whether the serotonin sacrifice is worth the oxytocin gain.

All these chemicals are managed by the brain’s limbic system, also known as the reptilian brain. The limbic system consists of the amygdala, hippocampus, hypothalamus, and other parts. All mammals have a limbic system and thus the ability to secrete these happy hormones. From an evolutionary perspective, these chemicals serve as a reward mechanism to train the brain. For example, romantic love and sexual intercourse produce dopamine and oxytocin. This trains the mind to seek love and sex and thus contribute to the propagation and survival of the species. Success at a job can produce serotonin and thus train the brain to seek more success and thus secure financial security required for survival. Exercise produces pain, which results in endorphin production. The pain is masked by the endorphins and the body is trained to seek more exercise, thus equipping the body with better survival mechanism.

Since the theory of evolution is widely accepted and relatively well understood in scientific circles, it seems to have become fashionable to explain the brain’s chemical secretions in terms of survival mechanisms. The explanations seem to fit and make sense, but human beings are different than other mammals and not necessarily at the mercy of evolution. In Harold’s example, if he feels stressed while designing the elephant structure, he can reduce the cortisol level in his brain by seeking his fiancée’s company, which could increase the oxytocin level. Or he can go for a run to increase the endorphin levels. He can also visualize what it would be like to see his sculptor inside the restaurant which could help increase the serotonin. Another option would be to increase his dopamine level by treating himself to a good meal or to something else that he wants. The more Harold knows about how the neurotransmitter can help him maintain a joyful life, the better he can manage them to negotiate happiness.


References:

1. Breuning, Loretta Graziano (2012-02-14). Meet Your Happy Chemicals: Dopamine, Endorphin, Oxytocin, Serotonin. System Integrity Press.

2. Ratey, John J. MD. A User’s Guide to the Brain: Perception, Attention, and the Four Theatres of the Brain. Random House, Inc.

Advertisements

Stop, thief!

 

topic Anger
organ amygdala
chemicals adrenaline, dopamine, serotonin

 

The vibrant colors of the murals in Clarion Alley in San Francisco awaken my senses. The twilight is perfect for capturing the mood via photographs.

I finish planning a composition and am about to click when a man on a bike rides by and snatches the camera from my hand. For a few split seconds, I do not comprehend or accept what has just happened. Then I start to scream: He stole my camera! He stole my camera!

I feel violated. I have several months of photographs in that camera. My camera!

I run after him, screaming, as he turns right onto Mission Street. I realize that I have lost my photos and will not be getting them back but I am unable to accept this fact. I continue to scream. Then a strange and unexpected series of events occur.

The man who has stolen my camera comes back into the alley on foot. He holds up the camera as if he is going to give it back to me. I reach for it, unsure as to what is going on. He runs with the camera tightly held within his large hand. What happened to his bicycle, I wonder but I do not have time to consider this. He is running now in the opposite direction from Mission and towards Valencia Street. He is running towards the Mission Police Station! I doubt that he realizes this, however.

I start screaming at the top of my lungs and run after him. I am not saying anything this time. I am simply making a deep guttural sound, primitive language-independent screams of distress.

A policeman on a bike rides by me and asks what happened. He is headed from Mission to Valencia, the same direction as the thief. I tell him and he rides after the thief, who has already disappeared around the corner on Valencia. Another policeman on a bike also chases after the thief. I wonder if this might be why the thief has abandoned his bike, to perhaps find a route that does not allow a bike passage. Or, perhaps his bike is stolen also.

Then I hear sirens.

I slow down and start walking instead of running. I am out of breath and feeling calmer. A group of people walk towards me “You are lucky, they got him,” one of them says.

Why do I react with so much aggression and without any consideration for my safety?

Surprise or fear can trigger an adrenaline rush. The quantity of the adrenaline released and thus the degree of reaction is determined by chemical factors. A low quantity of the “happy” neurotransmitters dopamine and serotonin in the brain triggers a higher degree of adrenaline production. In other words, the less happy the brain, the higher the level of adrenaline it produces.

When the thief ripped the camera from my hand, my adrenaline level probably shot up. The level of adrenaline might have been exacerbated even further by the fact that I was in an unhappy mood. I had left my apartment a few hours ago in an angry mood because I was upset with my boyfriend. This would have resulted in a depletion of dopamine and serotonin.

In a different state of mind, would I have screamed less and potentially let the thief get away? Or would I have not made the primitive guttural sounds that, in retrospect, seem to be an over-reaction to the loss of some photos, as precious as they might have been.

Low dopamine and serotonin and high adrenaline do not activate a response but only contribute to the activation. The response is activated in the limbic system specifically in the amygdala. The amygdala is one of the major organs responsible for the perception of threat and for triggering an emotional response. It can hijack the potentially rational responses from other parts of the brain and cause irrational reactions. In my case, I did not consider my own safety because I was furious that my personal space and property had been violated.

Later that day, when I am in the Police Station talking into a tape recorder and going through the story of what has happened, the police inspector asks me if I want to press charges.

“It’s wrong to steal and he should be punished. But he must have been really desperate to want to steal a camera,” my thoughts tumble out of my mouth. I decide not to press charges. Technically, it is not my decision because the district attorney will press charges anyway because the man was arrested. I did not know this at the time, however, and despite my conflict, I made a decision to not punish the thief any more than he had already been punished.

Perhaps I was being kinder because the dopamine and serotonin levels in my brain had surged back up when I found out that justice had been done and that I would get my camera back. Also, my boyfriend came to the police station and held my hand and kept me company while the inspector was talking to me. His presence might have contributed to the raised levels of the “feel good” hormones.

This is all hypothetical, of course, based on my knowledge of neuroscience and research on the neuropathy of anger. I would have had to be hooked up to an fMRI (functional magnetic resonance imager) to prove my hypothesis about the actions of the amygdala and the levels of adrenaline, serotonin, and dopamine in my brain. Nonetheless, it is fun to try to guess the biological triggers for my actions when confronted with a “fight or flight” situation.


References:

Dr. Goulston, Mark,Usable Insight, The Neuroscience of Anger, Monday, April 18th, 2011, http://markgoulston.com/usable-insight-the-neuroscience-of-anger/

© Copyright Leena Prasad 2011. All rights reserved.